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ABSTRACT 

A method is presented for the numerical solution of the Volterra integral equation 
which describes signal propagation on an electron beam or electrostatic oscillations 
of a temperate plasma. The method is based on a step function approximation of the 
velocity distribution function, an approximation suitable for direct inclusion of 
experimental data, and Iaplace transform analysis is used to obtain a solution expressed 
as an almost periodic function. Results of computation are presented for an example 
typical of the electron beam problem. It is shown that for a specified maximum error 
the order of the approximation of the distribution function is a linearly increasing 
function of the maximum value of the independent variable. 

INTRODUCTION 

The problem of signal propagation along a polychromatic electron beam [l] 
and the problem of electrostatic oscillations in a temperate plasma [2] are, in a 
large measure, formally identical [3]. The former is a boundary value problem 
and the latter is an initial value problem, but both can be stated in terms of the 
Volterra integral equation of the Faltung type, 

The formal solutions of these problems have been developed from the alternate 
techniques of Laplace transform [2] and Fourier analysis [4]. While the latter is 
mathematically more esoteric, requiring theorems from theories of generalized 
functions and singular integral equations, both methods have been shown to yield 

* Supported in part by National Science Foundation Grant G-21998. 

399 



400 KENT AND MAUTZ 

equivalent results [5]. It is from these techniques, which have been extensively 
discussed in the literature, as well as from iterative methods [6] that one must 
choose a numerical procedure for the solution of Eq. (1). 

The need for a numerical method stems from the interest in determining experi- 
mentally whether or not the physical assumptions from which (1) is derived are in 
fact valid for the electron beam problem [7, 81. To settle the question, one must 
determine the kernel of (1) from experimental data, find a numerical solution, and 
test that solution against additional experimental data. Moreover, the method of 
solution should lend itself to the reverse procedure, i.e., determination of the 
solution from experimental data, solving the inverse equation to find the kernel, 
and testing this result against experimental data. 

In this paper we describe a numerical procedure based on a simple approximation 
of the distribution function which appears in the kernel. The approximation is 
suitable for fitting experimental points, and the kernel realized is such that Laplace 
transform analysis is reduced to a matter of determining poles, zeros, and residues 
of a rational function. The solution obtained is in the form of a sum of a finite 
number of sinusoidal terms, the number depending on the degree of the approxima- 
tion to the distribution function. It is, therefore, an almost periodic function, and 
it approximates the exact solution for a finite range of X. This range is roughly 
proportional to the number of terms in the sum. At least part of the exact solution 
is in the form of a Fourier integral; and if this part is to be approximated by an 
almost periodic function, the linear relationship between the range of the variable 
and the number of terms, for a given accuracy, is to be expected. 

APPROXIMATION FORMULAS 

For the electron beam the terms in (1) are defined as follows: 

f(r]) = the longitudinal velocity distribution function, normalized so that 

1 f(T)4 = 1, (2) 

J xfh> 4 = 1, (3) 

7 = the Ion gi u inal t d velocity, normalized with respect to the average 
unperturbed beam velocity; 

44 = 1 @V/h) exp(--ixlrl) & (4) 

= the ballistic current, normalized with respect to the product of the 
beam conductance and the modulation voltage [9]; 
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y(x) = convection current, normalized as is k(x); 
x = distance, normalized with respect to (v/w), where u is the average 

velocity and w the modulation frequency; 
X = (wP/o), where wp is the plasma frequency of the beam. 

Equation (1) is based on the assumptions that (i) the modulation is a small 
perturbation of the dc beam velocities, (ii) that only the longitudinal coordinate is 
of consequence, and (iii) that only velocity modulation occurs. 

The solution of (1) can be expected to be of the form 

y(x) = w(x) exp(-ix) (5) 

where w(x) is a relatively slowly varying function. Accordingly, it is convenient to 
transform (1) to an equation in w(x), and one obtains by substitution of (5) into (1) 
the equation 

w(x) = h(x) - iA2 j,” h(x - C) w(# df, (6) 

in which the new kernel is given by 

44 = j (dfl@) ew[--iWrl - 111 h. 

Since the ultimate result desired is 1 y 12, which, according to (5) is the same as 
( w 12, we need be concerned only with the solution of (6). 

With the aid of the convolution theorem, one can take the Laplace transform 
of (6) and solve for the transform of w(x) to obtain 

WP> = fO)l[l + i~2JWl G-3) 

where 

The problem now is to find a representation of H(p) as a rational function so that 
the inversion of (8) is reduced in essence to the calculation of poles and corre- 
sponding residues. 

The approximation of the distribution function and, hence, the kernel is more 
conveniently carried through after writing the kernel in a somewhat different form. 
The form is obtained by a partial integration with respect to r) followed by the 
translation of the origin given by 

8 = (l/v - 1). (9) 



402 KENT AND MAUTZ 

In this manner one gets 

h(x) = --ix s”’ g(8) exp( -i&) dtl, 
81 

(10) 

where 

g(e) = fW(l + @I 
$1 = w?, - 1); 42 = (v?l - 1); 72 > Tl. 

It is assumed here and throughout the following that f(q) is nonzero only when 
71 > 77 > 7?2 * 

Let g,(B) be the n’th order approximation of g(B), given by the sum of step 
functions 

n+1 

&m = c Gw - (41 + (j - l&o1 (11) 
j=l 

where d = (4, - r&l>/ n. I n order that the approximation vanish outside the end 
points, a necessary constraint on the coefficients is 

?Z+1 
; aj = 0. 

By substituting (11) into (10) and making use of (12), one obtains 

n+1 

h,(X) = - C aj exp[-ix($l + (j - lM)l 
i=l 

and the Laplace transform of (13) is 

n+1 

Hn(p) = -,z p + i[& T(j - l)d] * 

(12) 

(13) 

(14) 

The choice of the (n + 1) aj’s is a matter of curve fitting, and there are many 
criteria of goodness which might be adopted. Since the moments of the distribution 
function have some interpretation in terms of macroscopic, measurable physical 
quantities, one is tempted to employ a curve fitting procedure which makes the 
moments of the approximate function equal to the exact moments. It is apparent, 
however, that as n is increased, improving the approximation, the constraints 
introduced for this purpose become numerically inconsequential. This fact, in some 
cases at least, shows itself in the linear system of equations for the ai’s; as IZ is 
increased, the matrix of the system becomes progressively more ill-conditioned. It 
is likely, therefore, that moment invariant curve fitting is computationally imprac- 
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tical. For the sake of completeness, however, two such curve fitting procedures are 
outlined in the appendix to this paper. Both serve as examples of the inherent 
difficulties described. 

The simplest curve fitting procedure is to set 

$l%=b”=g(h+(k--f)d) k=l,2 ,..., Iz. (15) 

It has the advantage that when IZ is sufficiently large, the approximation oscillates 
about the actual function, and there is inconsequential violation by the approxima- 
tion of the normalization conditions, (2) and (3). Expressions (15) and (12) con- 
stitute a system of (n + 1) linear equations for the ai’s. Moreover, the solution can 
be obtained by inspection. It is 

a, = bj - bj-l , 
j = 1, 2 ,...) (n + l), 

6, = b,,, = 0. 
(16) 

While (11) is an approximation of the distribution function by step functions, 
we could have, alternatively but less palatably, approximated the derivative of the 
distribution function by a sum of delta functions. In the latter case, (16) would 
take the form 

a1 = g'<b,><42 - M2% 

aj = g'(41 + (j - wM42 - bl)h j = 2, 3 ,..., 12, (17) 

%+1 = g'(42><$2 - APn. 

Expression (17) shows the aj’s decrease inversely as n increases. 
The next step in the solution is the determination of the poles and corresponding 

residues of the transform Wn( p). In view of (8) and (14) it is evident that W,(p) is 
a rational function expressible as the ratio of two polynomials, and it has the follow- 
ing special properties: 

(i) The point at infinity is a double zero. This follows from the constraint (12). 
(ii) If all of the ais are different from zero there are (n + 1) poles and (n - 1) 

zeros on the finite plane. 
(iii) If the sequence of aj’s has only one sign change, all the finite zeros and 

poles lie on the imaginary axis. 

In the following analysis it is assumed that all the uj’s are nonvanishing and that 
the sequence has only one sign change. The first assumption is not particularly 
restrictive and can be removed at a later time. From the physics of the problem, 
there is little reason to expect that the latter assumption need be altered. 

&/3/3-5 
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In view of the above properties, W,(p) can be- written in the form 

n+l 

w,(P) = ,C, p :lig, W 

where ( -iql , -iqn ,..., -iqm+3 are the poles of W,(p) and (A,, A, ,..., A,+J are 
the corresponding residues. The approximate solution of (6) is the inverse trans- 
form of (18) 

n+1 

%W = 1 Arc exp(--iqk4 
k=l 

(19) 

and the form of the solution required is 

; 1 %(X)1 a = ; $ &A k eXp i(qk - qj)X 
3.k 

(20) 

since the AI’s are all real. The solution may also be written 

; 1 Wdx)ls = ; *f Aj2 + n=1 Aj jc” Ak cos(qk - qi)x. 
34 j=2 k-1 

(21) 

Thus it is apparent that the next task is computation of the 2(n + 1) constants 
appearing in these results. 

For the calculation of the poles and residues of W,(p), it is convenient to intro- 
duce the following notation: 

p = -iq, (22) 

Hence 

K(P) = K(q). (23) 

n+1 

FJq) = ,c, -q + (& “; (j - l)d) 

and 

W,(p) = ZXM - W&d). (25) 

Evidently, the qk’s appearing in expressions (18x21) are the (n + 1) roots of the 
rational equation 

F,(q) = l/P. (26) 
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FIG. 1. Sketch of F,(q), showing alternate poles and zeros. 

The understanding of the problem of solving (26) is facilitated 
! 
by the example 

illustrated in Fig. 1. The sketch of F,(q) shows six isolated polesyand four zeros, 
which are also the zeros of W, . A zero exists between adjacent poles except in the 
interval corresponding to the point where the sequence of ug’s changes sign. The 
intersections of F,(q) with the horizontal line (l/P) are the six solutions of (26). 
For this example, it is evident that in general the roots of (26) satisfy the inequalities 

41 < 41 < 92 < ($1 + 4 < q3 "'41 < 41-t u- 1% 

qn+1 > 42 > 4% > (42 - 4 -a* qr+l > A+ l4 (27) 

providing a, > 0, k = 1,2 ,..., I, and the remaining uf’s are negative.1 m 
When ha is very small, the solutions of (26) occur near the poles of F,(q). Thus 

the first approximation of the k’th solution is &.. m 
qp’ = c$, + (k - l)A - a,X2. (28) 

Improvement on this first estimate can be obtained by Newton’s method. The 
procedure should converge rapidly because the derivative at this point is of the 
order of ( 1/A4). If the superscript (m) indicates the order of the iteration, Newton’s 
formula is 

qk h, = q’,- + (1 - X2F,(q~~-‘)))/h2F~(q~~-l)). 

The A,‘s are obtained from the formula 

(29) 

Al, = --l/h4&&k). (30) 

From this expression it is apparent that the AK)s are essentially a byproduct of the 
computation of the qk’s, when Newton’s method is used. When (28) gives a reason- 
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able estimate of qk , it follows from (30) that A, is approximately proportional to 
ak , and hence decreases linearly with n. 

The total 2(n + 1) constants appearing in (21) are not independent. There 
exist n relations between them so that the (n + 2) remaining constants are uniquely 
determined by the (n + 2) data points. Two of the n relations are simple enough to 
be useful as checks on the validity of the computation. These are: 

S+l 
c Ak = 0, (31) 
i=l 

and 
n+1 
,F; qk = UP)(~ + l)($l + $2). (32) 

EVALUATION OF THE METHOD 

The proposed method was evaluated by comparing results for a particular 
example with results obtained by a presumably more exact technique. 

The “exact” method depends on writing the transform of (7) in the form 

+* g’(e) H(-iq) = i .I‘-, K de, Imq>O 

and choosing g(0) so that the indicated integration can be carried out explicitly. 
Expression (33) defines an analytic function on the complex q plane, cut on the 
straight line joining (-4, 0) to (4, 0), and a corresponding branch cut is required 
to make W(p) single-valued. Thus the inversion integral for obtaining W(X) can be 
expressed as an integral around the branch cut and a summation over residues. 
Specifically, one gets Q(q) ev(- iqx) w(x) = -si: [I - A2F(q)]" + [A2rQ(a)]2 dq- C exp(- iqk4 

k=o,b h4$ ( 
3 (34) 

qk 

where 

F(q) = Principal Value s 
+* g’(e) d(j, 
-6e-q 

Q(q) = ~~~~~~g'(e)[e-(gl+k)-e-~~-ji.)lde~ 
qa ; qb are the zeros of 1 - h2F(q). 
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FIG. 2. Normalized power against normalized distance, as calculated for n = 10 and by 
the standard method. 

If g(0) is rational, the latter two defining integrals can be evaluated explicitly, and 
numerical integration of (34) yields the desired standard solution. 

The example was specified by the choice 

g(e) = 4$ -L (1 + 8)s (1 - fP@Z), 181 r+ 

= 0, /e1>+, (35) 

where $ was fixed to correspond to a velocity spread of 10%. The parameter X2 was 
assigned the value 10-3. Both g(0) and the parameters are reasonably typical of 
the electron beam problem. 

The numerical evaluation of the integral in (34) was accomplished by fitting a 
sum of step functions to the spectral density in the integrand followed by analytic 

FIG. 3. 
0 50 100 150 200 

Maximum error in the calculation against normalized distance, with it as a parameter. 
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integration. The fit was made at one hundred equally spaced points. The numbers 
q. and qb were obtained by Newton’s method. 

Figure 2 shows the results of the lOth-order approximation and the “exact” 
solution plotted against x. The two solutions agree rather well for x < 70, but a 
significant deviation in both amplitude and the location of zeros begins to develop 
for larger x. 

If we define the error as the difference between these curves divided by the first 
peak value of the “exact” solution, the error is an oscillating function of X. Plots 
of the error against x were made, and envelopes of these oscillating curves were 
constructed graphically. These envelopes, shown in Fig. 3, represent the maximum 
possible error. It is clear from Fig. 2 that the maximum error occurs near but not 
necessarily at the value of x taken from Fig. 3. Figure 4 ihustrates the nearly linear 
relationship between the order of approximation and the maximum value of x for 
a given maximum error. 

For the example presented, the asymptotic solution consists of two space charge 
waves. The contribution of the integral in (34) is 0(1/x) at least, according to the 
Riemann-Lebesque lemma [IO], and it goes to zero in the truly exact solution. 
Figures 5 and 6 show the calculations of the propagation constants and the ampli- 
tudes of these waves plotted against n. The isolated points are the estimates of these 
numbers obtained from the “exact” calculation. These two figures demonstrate 
the fact that separation of the solution into its transient and asymptotic parts 
results in large errors in each part, while the total solution is comparatively very 
good. 

FIG. 4. Order of approximation against distance, with maximum error as a parameter. 
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FIG. 5. Illustration of the phase error of the space charge waves as dependent on the order 
of approximation. 
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FIG. 6. Illustration of the amplitude error of the space charge waves as dependent on the 
order of approximation. 
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CONCLUDING REMARKS 

The point has been argued in some detail [3] that the experimental measurement 
of a distribution function with instruments limited by noise can produce only a 
finite, albeit optimum, number of data points. Such being the case, there is little 
justification for fitting the measured values of the distribution function in any way 
more elaborate than the step function approximation proposed here. The inter- 
polation between data points will, of course, have a profound effect on the 
asymptotic solution, but this fact means simply that the asymptotic solution is no 
better than the sagacity of the guess at an interpolation rule. If one agrees that 
calculation of the asymptotic solution is not meaningful in view of experimental 
limitations, then the results of computation should be accepted only to values of 
x such that the error is insensitive to the method of interpolation. 

In view of the significance of the analyticity off’(q), as discussed by Landau, 
Van Kampen, and many others, it is difficult to conceive of a worse interpolation 
rule than that used here. Nevertheless, the results compare favorably with the 
“exact” solution for limited values of x, and the legitimacy of a smoother interpola- 
tion is a moot question. 

The “exact” calculation used as a standard of comparison suffers from the same 
limitations as the proposed method. Both solutions approximate a continuous 
spectrum as a discrete one, and both are expressed in terms of almost periodic 
functions. When the number of waves in the discrete spectrum is small, it is to be 
expected that errors in both the amplitude and the zero locations should appear 
at small values of X. Moreover, the part of the solution corresponding to the 
evanescent part of the truly exact solution will ultimately, at large X, begin to 
repeat itself, almost, and the error will approach 100 %. This property of an almost 
periodic function [I l] can be used to support, with more rigor than given here, the 
contention that there is a linear relationship between the order of approximation 
and the maximum value of x for a specified maximum error. 

While this method makes it a simple matter to incorporate measurements of the 
distribution function into the calculations, it is not of much help in the inverse 
problem. A desirable solution to both problems together would consist of a method 
for approximating a continuous spectrum with a discrete one in such a way as to 
optimize the curve fitting to two sets of experimental data. 
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APPENDIX. MOMENT-INVARIANT CURVE-FITTING 

One moment-invariant curve-fitting procedure is the choice of the (n + 1) aj’s 
to make a least-squares fit to the data, subject to the constraints imposed by (12) 
and the two normalization conditions, (2) and (3). The latter are expressed as 

i 
d2 gnu4 de = y1 
m, (1 + e)2 jzl 1 + $1 +“cj - l)O = l 

corresponding to (2), and 

s 62 g,(e) de = ‘y ,1 (1 + e)3 2 jzl (1 + $1 +“(j - l)@ = l 

641) 

WI 

corresponding to (3). If the data points at which the fit is to be made are the IZ 
constants 

bj = g(h + (j - 3>4 j = 1, 2,..., it 

then (bj - CL=, ak) is the difference between the data and the approximation at 
the points 8 = 41 + (j - $)A. The a,% are to be chosen so that the square of the 
difference summed over all j’s is a minimum, subject to the constraints (12), (Al), 
and (A2). The constraints require the introduction of three Lagrange multipliers 
(X, , h, , X3), and the function to be extremized is 

&$,a, 9 03 9-..9 G&+1 > - y (4 - i as)' - Xl $1 l + - 
j=l k=l 

+ 
1 

+";i - l)d 

+";j- I@)2 

n+1 

- A3 jFl ai . (A31 
1 

It is to be understood in (A3) that b,,, is zero. 
Differentiation of (A3) with respect to a, (I = 1,2,..., 12 + 1) and equating the 

derivatives to zero yields the following set of (n + 1) linear equations 

n+l i a+1 

Fl & ak = ;, bk + ; Al l 1 + +1+ (I - l)d 

+ t h2 (1 + d1 :(I - 1)4)2 + ; x3 ’ I= 1,2 ,..., n+l. (A4) 

This result as it stands is not in convenient form for obtaining the al’s, but an 
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elementary transformation of this system gives the desired form. The left member 
of (A4) is the column vector A = (aI , a, ,..., %+&, premultiplied by the matrix B, 

This matrix is diagonal&d by the elementary transformation 

where 

- 6, + j = 2, 3 ,..., n + 1, 
3k 

= I 2Bj1c (Bj-1.8 Bj+d 
& - &k , j= 1, 

6jk = 1, j=k 

=o 9 j# k 

B n+Z,k = 0. 

This transformation is equivalent to multiplying the Ith equation of (A4) by 2 and 
subtracting the sum of the (I - 1)st and (1-t 1)st equations for all I greater than 
one. For I = 1, it is merely necessary to subtract the second equation from the 
first. The result is the following set of n equations. 

al = (bz - bz-d + T 1 + +1 + (I _ l)A - I 2 1 1 
1 + & + 1A - 1 + $I+ (I - 34 I 

+ + I(1 + cjl +‘(I - l)A)2 - ( 1 + +f + lA)2 - (1 + $r :(I - 2)A)2 ’ I 
I = 2, 3 ,..., n. (A5) 

The (n + 1)st equation defines A,, , and the equation is not required except for this 
purpose. 

The Lagrange multipliers can now be obtained by first using (12) to eliminate 
&,,I from (Al) and (A2) and secondly using (A5) to eliminate the remaining af)s. 
The result of these substitutions is a set of two linear equations for the multipliers 
of the form 

&Al + A,,)\, = c, 9 
-42A + A,&2 = C2 . 

646) 
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While this set of equations has a unique solution, both X, and X, increase in 
proportion to n when n is large. At the same time, however, the coefficients of the 
x’s in (A5) decrease in proportion to (l/n“). Thus the contribution to the ais of 
the constraints decreases as (l/n), and the moment invariant feature of the curve 
fitting becomes insignificant. Nevertheless, this fact may not appear in the machine 
computation because of the loss of significant figures in solving (A6) and computing 
645). 

A second curve fitting procedure gives an approximation with the first n moments 
of the approximate function equal to those of the exact function. This procedure 
yields, together with (12) the following system of (n + 1) equations: 

&-;g; [l + &+$- l)d]k+l = pk’ k = 0, l,..., (n - 1), 

where the Pk’s are the moments, 

pk = 1: f(T) ‘i’” 4. W) 

Expressions (Al) and (A2) are evidently included in (A7). 
The practicality of this procedure depends on the sensitivity of the solution of 

(A7) to computational errors in the coefficients. The sensitivity increases as the 
magnitude of the determinant of the normalized coefficient matrix decreases 
relative to unity. This determinant can be written 

1 X, x12 *** xrn 

det(Q = (r&Jl,2 
1 x2 $2 *** x2” 
1 x, x32 +** x,” 
. . . . . . . . . . . . . 

1 x,+1 z+, -** x+1 

- 

x.i = MU + 41) + (j - lY1, 
sj = 1 + xj2 + xj4 + *** xy = (x7+2 - l)/(Xj2 - 1). 

It is shown in various texts on numerical analysis (See, for example, Richard 
W. Hamming, “Numerical Methods for Scientists and Engineers,” McGraw Hill, 
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New York, 1962) that the determinant in (A9) is the product of n(n + I)/2 factors 
of the form (xi - xJ, j f k, and hence (A9) can be written in the equivalent form 

det(C ) 
11. 

= I%+1 (4 - x&J 
<ny+Y; sy2 . (AlO) 

This expression is convenient for obtaining an estimate, or at least a bounding 
relation, for the least upper bound of det(C,J. Since 

Ml + dl> = Xl > x2 > .** > x,+1 = l/(1 + y&L (All) 

it follows that 

Thus 

det(C,) < 
(x1 - Xn+l)n(*+l)‘2 

sF+Y2 ’ 

The term 

l/&,1 = (1 + $2)2n - 1 
l - [p-i+,)2~+2 - 1 1 < 1 

* 

(A131 

(A141 

Assuming that (& + &) is very small and that both & and +2 are less than one 
in magnitude. 

(Xl - x,+1) = ($2 - 461) = (42 - $1). (1 + dl)U + 952) - 

Expressions (A13) and (A14) set upper bounds well above their minimum values, 
and one expects from their combination with (A15) the strong inequality 

det(C,J < (42 - I$$(~+~)/~. (f4W 

Typical numbers for this particular problem are +2 - $r = 0.2 and n = 10. 
These give 

det(C,) < (0.2)55 g 3 x 10-3s. 6417) 

One concludes from such numbers that the coefficient matrix is so extremely 
ill-conditioned that this curve fitting procedure is quite unworkable. 
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